Composition and origin of particulate matter In The Antarctic Region

1 St 10 MLIBS 2020 International Online Meeting on LIBS OMLIBS 2020: INTERNATIONAL ONLINE MEETING ON LIBS 7th July

César Marina Montes 1, Andrés Cruz Conesa 1, Luis Vicente Pérez Arribas 2, Jesús Anzano 1, Abrahan Velásquez 1, Jorge O. Cáceres 2

1 : Laser Lab, Chemistry & Environment Group, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza. Pedró Cerbuna 12, 50009 Zaragoza, Spain

2 : Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid. Plaza de Ciencias 1, 28040 Madrid, Spain

proyecto_ca3 <a>©

AntartidaCA3

ProyectoCA3 f

antarctic-aerosols.com

Presentation structure

- 1. Introduction
- 2. Methodology
- 3.1 Soil sample analysis (CF-LIBS)

 3.2 Filter samples 3.2.1 Principal component analysis (PCA)
 3.2.2 Enrichment factor (EF)
 3.3 Air mass backward trajectories

 3.4 Polar contour maps
- 4. Conclusions
- 5. References

1. Introduction

- Aerosols are suspended particulate matter (PM_{2.5} or PM₁₀) and act as climate drivers.
- Antarctica's environment and ecosystem can negatively be affected by PM, although its isolation.
- The study of atmospheric aerosols in the Antarctic region is important to understand their **impact** on the icy continent.
- It is essential to **identify** them and **determine** both the **natural** (sea salt, mineral dust, biogenic emissions, volcanoes, etc.) and the **anthropogenic sources** (fossil fuel combustion, mining, smelting, construction, agriculture, etc.) of Antarctic aerosols.

2. Methodology

- Aerosol and soil samples were collected on
 Deception Island (Spanish Research base "Gabriel de Castilla", South Shetland Islands, Antarctic region) in the 2016/2017 antarctic campaign.
- Atmospheric PM was collected trough a low volumen sampler in circular quartz microfiber filter papers.
- Soil samples were analysed by LIBS (laser induced breakdown spectroscopy). PM in filters was chemically analysed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES).
- Air mass backward trajectories and polar contour maps were implemented to better understand the potential local and remote sources of PM.

3.1 Soil samples: Multielemental analysis using CF-LIBS 1000000

- 6 soil samples from different parts of Deception Island were analysed
- **720** measurements per sample
- Delay Time = 1900 ns, Gate Width = 3650 ns, Energy = 45 mJ

3.1 Soil samples: Multielemental analysis using CF-LIBS

- No need of calibration standards. Estimation of Te and Ne to determine composition.
- Ne was obtained from the hydrogen line.
- Te was estimated using the Saha-Boltzman plot.
- Relative abundance of each element was obtained.
- LTE verification using Mc Whirther Criterium: $N_e \text{ (cm}^{-3}) \ge 1.6 \times 10^{12} \text{ T}_e^{1/2} (\triangle E)^3$

Mean of the 6 samples:

Te =
$$9024 \pm 54 \text{ K}$$

Ne = $8.3 \pm 0.1 \times 10^{16} \text{ cm}^{-3}$

3.1 Soil samples: Multielemental analysis using CF-LIBS

Oxides (%), elements (ppm)	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
SiO ₂	46.25 ± 5.01	52.66 ± 5.13	54.86 ± 1.16	50.38 ± 1.92	51.29 ± 2.76	49.26 ± 2.68
Al ₂ O ₃	19.09 ± 1.69	18.19 ± 1.80	17.19 ± 0.81	19.38 ± 0.61	18.90 ± 1.97	20.86 ± 1.35
Fe ₂ O ₃	11.77 ± 1.41	9.93 ± 1.44	8.98 ± 0.21	9.74 ± 0.28	9.81 ± 0.68	10.92 ± 0.63
CaO	9.03 ± 1.28	7.74 ± 1.24	7.28 ± 0.49	8.09 ± 0.99	8.16 ± 0.77	6.97 ± 0.89
MgO	5.83 ± 1.89	4.99 ± 1.21	4.49 ± 0.47	4.90 ± 0.22	4.14 ± 0.32	4.34 ± 0.62
Na ₂ O	3.83 ± 0.60	3.04 ± 0.35	3.45 ± 0.14	3.37 ± 0.37	3.97 ± 0.33	3.21 ± 0.38
TiO ₂	3.25 ± 0.34	2.58 ± 0.39	3.09 ± 0.16	3.44 ± 0.39	3.05 ± 0.31	3.64 ± 0.42
K ₂ O	0.96 ± 0.15	0.87 ± 0.35	0.67 ± 0.03	0.71 ± 0.07	0.68 ± 0.10	0.80 ± 0.10
Mn	5203 ± 1689	2937 ± 926	3589 ± 889	3663 ± 1139	1303 ± 495	2697 ± 580
V	921 ± 351	1202 ± 419	1324 ± 665	556 ± 313	598 ± 177	1277 ± 328
Sr	526 ± 232	259 ± 56	308 ± 61	291 ± 42	329 ± 21	248 ± 65
Zr	177 ± 139	221 ± 62	191 ± 78	164 ± 69	221 ± 116	220 ± 89
Ва	75 ± 38	44 ± 9	40 ± 11	39 ± 9	44 ± 15	57 ± 14
Li	18 ± 5	8 ± 1	10 ± 1	9 ± 1	8 ± 1	11 ± 1

3.2 Filter samples: Principal Component Analysis

Principal Component Analysis (PCA)

High vector relationship implies a similar source

High significant correlations were found between:

3.2 Enrichment factor

Enrichment factor (EF)

Calculated EF values below 5 are explained as having a crustal origin, whereas values higher than 10 correspond to Supplementary sources.

Marina-Montes et al., 2020

3.3 Air mass backward trajectories

Local

Ti & **Mn** (01/01/17) Crustal

V & As (01/02/2017) Anthropogenic

Pb (01/01/17) Anthropogenic

Hf & **Zr** (25/02/2017) Crustal Cu & Sn (21/01/2017) Antropogenic

Remote

3.4 Polar contour maps

P & **K**: Natural Source (Guano from Pinguin Colony)

4. Conclusions

Potential Sources

- V & As: combustion of fossil fuels, produced mainly from the Gabriel de Castilla base, adjacent research station and tourist cruises.
- **Cu** & **Sn**: the highest Cu and Sn concentrations correspond with pathways crossing South America and Drake's passage (high maritime traffic zones).
- **Pb**: anthropogenic pollution from local (combustion of fossil fuels on the base/adjacent research station and/or local tourist cruises) and remote sources (transport from the upper atmosphere from remote places, such as Patagonia).
- **Ti** & **Mn**: resuspension of local soils.
- **Hf** & **Zr**: resuspension of remote soils.
- P & K: excrement (guano) in Punta de la Descubierta pinguin colony (Deception Island).

Most air masses were transported following the Antarctic Circumpolar Pattern

5. References

- Cáceres JO, Sanz-Mangas D, Manzoor S, Pérez-Arribas LV, Anzano J. Quantification of particulate matter, tracking the origin and relationship between elements for the environmental monitoring of the Antarctic region. Science of The Total Environment. 2019; 665: 125-132.
- Marina-Montes C, Pérez-Arribas LV, Escudero M, Anzano J, Cáceres JO. **Heavy metal transport and evolution** of atmospheric aerosols in the Antarctic region. *Science of The Total Environment*. 2020; 721: 137702.
- Marina-Montes C, Pérez-Arribas LV, Anzano J, Cáceres JO. Local and Remote Sources of Airborne Suspended Particulate Matter in the Antarctic Region. Atmosphere. 2020; 11(4):373.

proyecto_ca3 0 AntartidaCA3 ProyectoCA3

antarctic-aerosols.com

